Diophantine Approximation and Hausdorff Dimension

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hausdorff dimension and Diophantine approximation

In the present survey paper, we explain how the theory of Hausdorff dimension and Hausdorff measure is used to answer certain questions in Diophantine approximation. The final section is devoted to a discussion around the Diophantine properties of the points lying in the middle third Cantor set.

متن کامل

Diophantine Approximation, Khintchine's Theorem, Torus Geometry and Hausdorff Dimension

A general form of the Borel-Cantelli Lemma and its connection with the proof of Khintchine's Theorem on Diophantine approximation and the more general Khintchine-Groshev theorem are discussed. The torus geometry in the planar case allows a relatively direct proof of the planar Groshev theorem for the set of ψ-approximable points in the plane. The construction and use of Haudsorff measure and di...

متن کامل

Inhomogeneous Diophantine approximation on curves and Hausdorff dimension

The goal of this paper is to develop a coherent theory for inhomogeneous Diophantine approximation on curves in R akin to the well established homogeneous theory. More specifically, the measure theoretic results obtained generalize the fundamental homogeneous theorems of R.C. Baker (1978), Dodson, Dickinson (2000) and Beresnevich, Bernik, Kleinbock, Margulis (2002). In the case of planar curves...

متن کامل

Diophantine approximation on manifolds and lower bounds for Hausdorff dimension

Given n ∈ N and τ > 1 n , let Sn(τ) denote the classical set of τ approximable points in R, which consists of x ∈ R that lie within distance q from the lattice 1 q Z for infinitely many q ∈ N. In pioneering work, Kleinbock & Margulis showed that for any non-degenerate submanifold M of R and any τ > 1 n almost all points on M are not τ -approximable. Numerous subsequent papers have been geared t...

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 1970

ISSN: 0024-6115

DOI: 10.1112/plms/s3-21.1.1